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In the present study, the e!ect of a crack on the dynamic stability of a free}free
Timoshenko beam is investigated when it is subjected to a constant or a pulsating follower
force. A crack, one of the structural damages, results in a change of transverse vibration
frequencies and mode shapes. In addition, the crack may change the stability characteristics
of the beam. A mathematical model for the crack is introduced in the form of the bending
and shear compliance of equivalent incremental strain energy. To obtain numerical results,
the "nite element method and the method of multiple scales are applied in this work. As
a conclusion, the e!ect of the crack location and depth on the stability characteristics of the
system is illustrated.
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1. INTRODUCTION

A free}free beam subjected to a follower force has been extensively studied for the modelling
and analysis of dynamic stability of #exible missiles or space structures. The follower
force has been treated as a typical example of non-conservative force as in reference [1].
A large amount of research work dealing with the analysis of this kind of problems
has been carried out. Beal [2] investigated the dynamic stability of a missile, as
was modelled by a beam subjected to a thrust. In the paper, Galerkin's method of analysis
was used and then the stability characteristics of a beam was studied when it was
subjected to a constant and pulsating follower force. Wu [3] used the "nite element
method for the dynamic stability analysis of a missile under a follower force. It was noted
that the eigenvalue for the rigid-body mode became considerably large in the unstable
regions. Higuchi [4] studied the free}free beam with an end thrust. He compared the
experimental data with the numerical results for the dynamic stability analysis, and
noted that the results were approximately equal to each other. In case of the follower
force with a pulsating part, it may cause an instability due to &&parametric resonance''.
As a matter of fact, a considerably weak force may result in structural instability
around a speci"c frequency of the pulsating part of a force. Kar and Sujata [5]
studied the dynamic stability of a rotating beam under a transverse pulsating excitation.
Using the method of multiple scales, they showed that the "rst order approximation
was quite accurate. Kim and Choo [6] studied the dynamic stability of a free}free
beam with a concentrated mass subjected to a constant and pulsating follower force. In
this research work, by the "nite element method and the method of multiple scales,
the concentrated mass may change the combination-resonance type and the regions of
instability.
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It is well known that a crack may change the dynamic characteristics of a structure. In
other words, the crack results in the deviation of frequencies and mode shapes for the
vibration. In the past 20 years, the e!ect of a crack on structural vibration has been studied
by experiments or numerical methods of analysis. Due to the simplicity in the analysis of the
crack, the equivalent mathematical compliance has been widely used for numerical studies.
This method of analysis has been widely used, and many studies using this method
have been published. Anifantis and Dimarogonas [7] studied the e!ect of a crack on the
stability of a clamped beam subjected to a follower force. The equivalent spring model was
used to substitute a crack and it was shown that the crack changed eigenvalue curves and
critical loads. Gounaris and Dimarogonas [8] suggested a method in which the #exibility
matrix can be used in the "nite element model. Suace et al. [9] studied the vibration
of a cantilever beam with a crack. In this work, they only considered breathing mode of
the crack, and obtained non-linear solution by considering time-dependent crack
conditions. Qian et al. [10] compared the opening crack model with the breathing
crack model. They concluded that the di!erence of solutions between the two models was
quite small when the amplitude was not so large, and the di!erence became large as the
amplitude increased.

Changes in vibration characteristics may result in changes in stability characteristics.
This means that the crack may change the critical loads or instability types. In the present
study, the e!ect of the crack on the stability of the free}free Timoshenko beam is
investigated when it is subjected to a constant and a pulsating follower force. The "nite
element method and the method of multiples are employed to obtain numerical data. For
convenience, the crack in this study is substituted by the equivalent #exibility matrix
obtained by equivalent increased strain energy and strain energy density function from
fracture mechanics [11]. For the various depths and locations of the cracks, the changes in
the critical load and the instability type are investigated. In the case of the pulsating follower
force, the change in the region of parametric resonance is investigated by the "rst order
expansion of the method of multiple scales.

2. ANALYSIS

2.1. FINITE ELEMENT ANALYSIS

Figure 1 shows a mathematical model to be used in this study. As shown in Figure 1(a),
consider a beam of length ¸ with a crack at x

c
subjected to a pulsating follower force

P"P
0
#P

1
cos Xt. Figure 1(b) shows a circular cross-section of radius r, and diameter

h with a crack on which moments and shear forces are acting. Based on the Timoshenko
beam theory, the strain}displacement relation is expressed as in reference [12],
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where w and h are the de#ection in y axis and rotation in xy plane respectively.
Hamilton's principle is used to derive equations of motion for the beam model as

d P
t2

t1

(¹!;#=
c
) dt#P

t2

t1

d=
nc

dt"0. (2)



Figure 1. Mathematical model. (a) Free-free beam with a crack subjected to a follower force; (b) element with
a crack.
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The strain energy ; is given by
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where E means Young's modulus, I denotes the moment of inertia of the cross-section,
k stands for the shear correction factor, G means the shear modulus and A denotes the area
of the cross-section. In addition, EI and kGA mean the bending sti!ness and the shear
sti!ness respectively. The kinetic energy ¹ is given by
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where o is the mass per unit volume. The work =
c

by the longitudinal component of
a follower force is

=
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The virtual work d=
nc

due to the transverse component of a follower force is
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x
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dw. (6)

Now, we use the following non-dimensional parameters, and governing equations are
discretized by the improved 2-node element (see reference [13] for details),
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where x@"x!(i!1) l at the ith element, k"6(1#l)/(7#6l) with l being the size of the
element, l is the Poisson ratio and u is non-dimensional frequency. Discretized and
assembled in the whole domain, the equations are given in the form
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where M is the mass matrix, K
b

is the bending sti!ness matrix and K
f

is the geometric
matrix due to the follower force.

2.2. MATHEMATICAL MODEL OF THE CRACK

The additional strain energy due to the crack can be considered in the form of a #exibility
coe$cient expressed in terms of the stress intensity factor, which can be derived by
Castigliano's theorem in the linear elastic range. An approach to this kind of problem is one
in which the element with a crack is constrained at one side and then the forces are applied
at the other side. The #exibility matrix can be easily obtained, and the sti!ness matrix of the
element with a crack can be derived from the conditions of equilibrium. The term c(1)

ij
of the

additional #exibility matrix C(1) due to the crack can be formulated as
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where J is the strain energy density function, and the total strain energy due to the crack can
be determined by integrating J over the crack. In addition, ;

i
is the displacement and P

i
is

the force in the i direction. The strain energy density function can be expressed as a function
of the stress intensity factor as
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where E@"E/(1#l). In addition, K
Ii

denotes the opening-type mode, K
IIi

stands for the
sliding-type mode and K

IIIi
represents the tearing-type mode.

For the transverse bending mode, the strain energy density function is given in terms of
the stress intensity factor as
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], (11)

where K
IM

denotes opening-type mode by moment, K
IP

stands for opening-type mode by
shear force, and K

IIP
represents sliding-type mode by shear force. For the convenience of

integration over the circular cross-section, the stress intensity factors are modi"ed and
expressed as
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where <, M denote force and moment, respectively, and

F
I
(y/h)"(tan m/m)1@2[0)923#0)199(1!sin m)4]/cos m,

F
II
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with m"ny/(2h). Substituting equations (11) and (12) into equation (9), the #exible matrix
due to the crack can be obtained.

The #exibility matrix for the element without a crack is represented by C(0). From the
equilibrium condition as shown in Figure 1(b), the transformation matrix ¹M , the sti!ness
matrix of the element without crack can be obtained as
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Using the #exibility matrix and transformation matrix ¹M , the sti!ness matrix of the element
without crack can be obtained as follows:

EK
bc
"¹M (C(0)#C(1))~1¹M T, (14)

where EK
bc

is the sti!ness matrix of the element containing the crack.

2.3. METHOD OF ANALYSIS

The discretized equations of motion are given by equation (8). We can write it in the form

MMUG N#KMUN!bQ
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where b"Q
1
/Q

cr
and K"K

b
!Q

0
K

f
noting that Q

cr
is the critical load of a beam without

a crack under a constant follower force. Applying the modal transformation, we can
transform the matrices M and K into diagonal matrices simultaneously, and then we can
use the method of multiple scales for the stability analysis.

Now, the mathematical processes are summarized. First of all, in order to exclude the
e!ect of the rigid body mode, only the modal vectors that represent the elastic modes are
used in the transformation. Adopting the normalized right modal matrix U, one gets the
following equations by transforming MUN to UMgN, and multiplying the transposed left
modal matrix WT:

IMgK N#KMgN!bQ
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cos XM qRMgN"M0N, (16)

where WTMU"I, WT KU"K, WTK
f
U"R and I is identity matrix. Rewriting the above

equation in component form, we have
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where e"!b/2, RI
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According to the method of multiple scales, the solution can be expressed in terms of e as
follows:
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where ¹
n
"ent, n"0, 1, 2,2 . Through the "rst order approximation, we can obtain the

transition curves in the e}XM plane as follows (see reference [14] for details):
(a) Sum-type combination resonance:
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(b) Di+erence-type combination resonance:
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The sum-type and di!erence-type combination resonances cannot exist simultaneously.
If a force is a conservative type, di!erence-type combination resonance does not appear as
the symmetry of R. For the non-conservative case, RI

pq
, RI

qp
can have opposite signs, and the

di!erence-type may also exist. In this study, the variation in instability region in the e}X
plane is investigated with varying depths and locations of the crack.

3. NUMERICAL RESULTS AND DISCUSSION

Table 1 shows the non-dimensional frequency reduction due to the crack, the depth of
which varies from 0 to 0)4. To check the convergence of the present numerical results, the
crack is located at the mid-point of the beam and the results are compared with the
analytical solution for a simply supported Euler beam. Because the beam model has quite
a large slenderness ratio (¸/h"300), it can be compared to the Euler beam. Figures 2 and
3 show frequency reduction of the "rst and second modes. As shown in the "gures, the
reduction in frequency is related to the depth and the position of the crack, and the mode
shapes.



TABLE 1

Non-dimensional frequency reduction due to a crack located at the mid-point of a simply
supported beam

Number of
elements N"5 N"15 N"25 Analytical solution

Mode 1st 2nd 1st 2nd 1st 2nd 1st 2nd
Depth (a/h)

0 9)8705 39)5410 9)8695 39)4770 9)8695 39)4780 9)8696 39)4780
0)1 9)8668 39)5290 9)8657 39)4620 9)8657 39)4610 9)8658 39)4630
0)2 9)8503 39)4750 9)8486 39)3960 9)8486 39)3950 9)8487 39)3950
0)3 9)8147 39)3580 9)8117 39)2520 9)8117 39)2480 9)8117 39)2480
0)4 9)7498 39)1420 9)7450 38)9950 9)7450 38)9880 9)7450 38)9850

Figure 2. First mode frequency reduction due to a crack.

Figure 3. Second mode frequency reduction due to a crack.
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3.1. EFFECT OF A CRACK ON THE STABILITY

In this study, all parameters are non-dimensional, and the diameter of the cross-section
and the length of the beam are set at a ratio of 1 : 10.

3.1.1. Constant follower force

Figure 4(a) shows the variation of eigenvalue curves for x
c
/¸"0)1 (refer to Figure 1(a)).

As the follower force increases, the "rst and the second mode frequencies decrease and
"nally coincide with each other. Figure 4(b) shows the changes of the critical load as the size
Figure 4. Change of stability characteristics by the crack located at 10% of beam length. (a) Eigenvalue curves.
Crack depth (a/h):== 0;** 0)1;** 0)2; - - - - - 0)3;* -* 0)4;* - -* 0)5. (b) Critical load versus crack
depth.



Figure 5. Changes of stability characteristics by the crack located at 30% of beam length. (a) Eigenvalue curves.
Crack depth (a/h):== 0;** 0)1;** 0)2; - - - - - 0)3;* -* 0)4;* - -* 0)5. (b) Critical load versus crack
depth.
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of the crack increases. The critical load slightly decreases and there is no change in
instability type. Figure 5 shows the stability characteristics of the beam for x

c
/¸"0)3. As

the depth of the crack becomes 37% of the diameter of the cross-section, the "rst mode
frequency merges into zero and divergence instability occurs. In this case, instability type is
divergence and it induces a sudden drop in the critical load. As shown in Figure 6, when the
crack is located at the mid-point of the beam, the divergence instability occurs at the
shallow crack and the amount of the critical load decrement is conspicuous. When the



Figure 6. Changes of stability characteristics by the crack located at 50% of beam length. (a) Eigenvalue curves.
Crack depth (a/h):== 0;** 0)1;** 0)2; - - - - - 0)3;* -* 0)4;* - -* 0)5. (b) Critical load versus crack
depth.
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depth of the crack becomes 50% of the section diameter, the critical load becomes a quarter
of the original critical load. Figure 7 shows the stability characteristics of the beam in the
case of x

c
/¸"0)7. The critical load decrement of the #utter type is conspicuous and the

divergence does not appear. Figure 8 shows the stability characteristics of the beam in the
case x

c
/¸"0)9. As for the case of x

c
/¸"0)7, the decrement of the #utter-type critical load

is conspicuous. As the depth of the crack becomes about half of the diameter of the cross-



Figure 7. Changes of stability characteristics by the crack located at 70% of beam length. (a) Eigenvalue curves.
Crack depth (a/h):== 0;** 0)1;** 0)2; - - - - - 0)3;* -* 0)4;* - -* 0)5. (b) Critical load versus crack
depth.
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section, divergence-type instability occurs. Figure 9 shows the in#uence of the location of
the crack on the critical load and the instability type. The divergence-type instability causes
a sudden drop in the critical load around the mid-point of the beam, and the e!ect of the
crack is signi"cant as the crack is located at the latter part of the beam. We can conclude



Figure 8. Changes of stability characteristics by the crack located at 90% of beam length. (a) Eigenvalue curves.
Crack depth (a/h):== 0;** 0)1;** 0)2; - - - - - 0)3;* -* 0)4;* - -* 0)5. (b) Critical load versus crack
depth.
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that the decrement of the #utter-type critical local is mainly dependent on the second mode
frequency reduction and the divergence-type instability is largely dependent on the "rst
mode frequency reduction. As a result, the position of the crack is important for the type of
instability and vibration mode shapes.



Figure 9. Changes of the critical load due to the crack.** Flutter; } } } } Divergence.

Figure 10. Parametric instability region of the beam without a crack.*s* 2u2;*r* u2}u1;*j* u3}u2;
*e* 2u1.
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3.1.2. Pulsating follower force

In this study, the constant component of the follower force is set to 10% of the critical
load of a beam without a crack. Figure 10 shows the instability boundary curves, and the
region between the two curves indicates the instability region due to the parametric



Figure 11. Variation of slope of stability boundary curve around 2u
1
. Location of crack (x

c
/¸): *r* 0)1;

*h* 0)3; *e*0)5; *n* 0)7; *]* 0)9.

Figure 12. Variation of slope of stability boundary curve around u
2
}u

1
. Location of crack (x

c
/¸): *r* 0)1;

*h* 0)3; *e*0)5; *n* 0)7; *]* 0)9.
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resonance. Figure 11 shows the e!ect of the crack on the slopes of the boundary curves at
around 2u

1
. Varying the depth of the crack to up to 50% of the diameter of the

cross-section, the variations of the slopes are observed. As the crack is positioned near the
mid-point of the beam, the increment of the slopes are large. As seen from Figure 12, the



Figure 13. Variation of slope of stability boundary curve around 2u
2
. Location of crack (x

c
/¸): *r* 0)1;

*h* 0)3; *e*0)5; *n* 0)7; *]* 0)9.

Figure 14. Variation of slope of stability boundary curve around u
1
#u

3
. Location of crack (x

c
/¸): sum type:

*s* 0)1; *h* 0)3; *e*0)5; *n* 0)7; *]* 0)9; (di!erence-type):*d* 0)1; *1* 0)9.
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slopes of the boundary curves around u
2
!u

1
decrease when the crack is located at the

front part of the beam. As the crack is located at the latter part of the beam, it induces
increment in the slopes. Figure 13 shows the slopes of the boundary curve around 2u

2
. The

e!ect of the crack on the increment of the slopes becomes larger as the crack is located in the
latter part of the beam. Figure 14 shows the case of combination resonance of type u #u .
1 3



Figure 15. Variation of slope of stability boundary curve around u
3
}u

2
. Location of crack (x

c
/¸): (di!erence-

type): *s* 0)1; *h* 0)3; *e*0)5; *n* 0)7; *]* 0)9; (sum-type): *d* 0)7; *1* 0)9.
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When there is no crack, combination type is sum-type. However, when the crack is located
near the both the end-points of the beam, the resonance changes into the combination type.
As seen from Figure 15, the crack located at the latter part of the beam changes the
resonance pattern of u

3
and u

2
from di!erence-type to sum-type.

4. CONCLUSION

The e!ect of the crack on the stability of a free}free beam subjected to a follower force is
studied. The decrement of frequencies depends on the position of the crack and the mode
shapes. The stability behavior is mainly a!ected by the location of the crack. We draw the
following conclusions:

4.1. CONSTANT FOLLOWER FORCE

When the crack is considerably small, the decrement of the critical load largely depends
on the decrement of the second mode frequency, because the instability type is the #utter. As
the depth of the crack becomes large, the divergence-type instability occurs when the crack
is located at the mid-point or the latter part of the beam, and it results in the sudden drop in
the critical load. The crack located at the latter part of the beam causes more decrement of
the critical load than the crack located at the front part of the beam.

4.2. PULSATING FOLLOWER FORCE

The e!ect of the crack on the instability region varies according to the location of the
crack. The crack changes not only the slopes of the boundary curve of the parametric
resonance but also the resonance type.
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